Group Actions as Stroboscopic Maps of Ordinary Differential Equations
نویسنده
چکیده
Non-invertible discrete-time dynamical systems can be derived from group actions. In the present work possibility of application of this method to systems of ordinary differential equations is studied. Invertible group actions are considered as possible candidates for stroboscopic maps of ordinary differential equations. It is shown that a map on SU (2) group interpolates exactly a flow of the Bloch equation. PACS numbers: 02.20.Qs, 02.30.Hq, 75.10.Jm
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملAPPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملModified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملOrdinary differential equations and their exponentials
In the context of Synthetic Differential Geometry, we discuss vector fields/ordinary differential equations as actions; in particular, we exploit function space formation (exponential spaces) in the category of actions. c © Central European Science Journals. All rights reserved.
متن کامل